Note

A Counterexample in the Theory of Best Approximation

J. MICHAEL WILSON*

Department of Mathematics, University of Vermont, Burlington, Vermont 05405

Communicated by T. J. Rivlin

Received June 28, 1989

We give an example of a domain Ω with smooth boundary and with compact subsets K_1 and K_2 , such that K_1 and K_2 have disjoint hulls, but such that there is no function u, harmonic on Ω , which is negative on K_1 and positive on K_2 . © 1990 Academic Press, Inc.

Let $\Omega \subset \mathbf{R}^d$ be a bounded connected open set and let $f: \overline{\Omega} \to \mathbf{R}$ be continuous. A standard problem in approximation theory is to find a function u, harmonic on Ω , such that

$$\sup_{z \in \Omega} |f(z) - u(z)| \equiv ||f - u||_{\infty}$$

is as small as possible. Such a *u* is called a *best harmonic approximation to f*.

A normal families argument shows that best harmonic approximations always exist. What approximation theorists look for are simple tests which will determine whether a given u is a best approximation to a given f.

A standard best-approximation test is stated in terms of the "hulls" of certain compact subsets of $\overline{\Omega}$ [1]. If $K \subset \overline{\Omega}$ is compact, we define the hull of K (denoted \hat{K}) to be the union of K along with all of the components of $\mathbb{R}^d \setminus K$ which are completely contained in Ω . Roughly speaking, \hat{K} is what you get by filling in K's holes. But you have to be a little careful when Ω is not simply connected. If $\Omega = \{z \in \mathbb{C} : 0 < |z| < 1\}$ and $K = \{z : |z| = \frac{1}{2}\}$, then $\hat{K} = K$, because K's "hole" touches $\partial \Omega$.

Now, let f be as above, and suppose that u is harmonic on Ω and continuous on $\overline{\Omega}$. Let $\rho = ||f - u||_{\infty}$ and set

$$\begin{split} K_+ &= \{z \in \bar{\Omega} : f(z) - u(z) = +\rho\}\\ K_- &= \{z \in \bar{\Omega} : f(z) - u(z) = -\rho\}. \end{split}$$

* Research partially supported by NSF Grant DMS-8811775 and VT-EPSCoR.

An easy argument involving the maximum principle shows that if $K_+ \cap \hat{K}_$ or $K_- \cap \hat{K}_+$ is non-empty, then *u* is a best harmonic approximation to *f*. It turns out that for reasonable domains without holes, this "linking" condition on K_+ and K_- is also necessary for *u* to be a best approximation. The proof of this fact makes use of various "Runge-type" theorems. If $\hat{K}_+ \cap \hat{K}_- = \emptyset$, then, under suitable hypotheses on Ω , one can build a function ϕ which is harmonic on Ω , continuous on $\overline{\Omega}$, and which is positive on K_+ and negative on K_- . One then adds a small scalar multiple of ϕ to *u* to get a better approximation.

It was asked whether such a simple linking condition might characterize best approximations on domains Ω which are not simply connected but whose boundaries are not especially pathological. The question, in its mildest form, boils down to this: Let $\Omega \subset \mathbb{R}^d$ have a smooth boundary. Let K_1 and K_2 be compact subsets of Ω such that $\hat{K}_1 \cap \hat{K}_2 = \emptyset$. Does there always exist a ϕ harmonic on Ω such that $\phi > 0$ on K_1 and $\phi < 0$ on K_2 ?

The reason that the answer to the question is not obviously "yes" is that the hull of $K_1 \cup K_2$ will generally be larger than that of $\hat{K}_1 \cup \hat{K}_2$, making the use of a Runge-type theorem impossible.

It turns out that the answer is NO.

We give the counterexample in d=2; it extends, with trivial modifications, to higher dimensions.

THEOREM 1. Let $\Omega = \{z \in \mathbb{C} : 1 < |z| < 2\}$. Let $K_1 = \{z : |z| = 1.1\} \cup \{1.6\}$ and $K_2 = \{z : |z| = 1.9\} \cup \{1.5\}$. There is no ϕ which is harmonic on Ω , negative on K_1 , and positive on K_2 .

Remark. Note that $\hat{K}_i = K_i$ for i = 1, 2, while the hull of $K_1 \cup K_2$ is $\{z : 1.1 \le |z| \le 1.9\}$.

Proof. Suppose that such a ϕ exists. We can symmetrise ϕ to make it even in the y-variable. The point 1.5 must be connected to $\partial\Omega$ by a path γ which lies completely inside the set $\{z : \phi(z) > 0\}$. (The fact that γ might have wild behavior near the boundary is irrelevant.) Since γ cannot meet $\{z : |z| = 1.1\} \subset K_1$, it must pass through $\{z : |z| = 1.9\}$. Because of ϕ 's symmetry, the complex conjugate of γ must have the same property. The union of these two paths, plus the circle $\{z : |z| = 1.9\}$, is a subset of $\{z : \phi(z) > 0\}$, which completely surrounds—in Ω —the point 1.6, and this is impossible if $\phi(1.6) < 0$. Q.E.D.

COROLLARY 2. The linking condition $\hat{K}_+ \cap \hat{K}_- \neq \emptyset$ is not necessary for best approximation in an annulus.

Proof. Let Ω , K_1 , and K_2 be as above. Let f be any function continuous on $\overline{\Omega}$ such that $f \equiv -1$ on K_1 , $f \equiv 1$ on K_2 , and |f| < 1 elsewhere. Then the

J. MICHAEL WILSON

zero function is a best approximation to f, because any better harmonic approximation would have to be negative on K_1 and positive on K_2 , which is impossible; and this holds even though $K_- = K_1$ and $K_+ = K_2$ are not "linked." Q.E.D.

The proof of Theorem 1 has an amusing corollary:

COROLLARY 3. Let u be harmonic on $\Omega = \{z \in \mathbb{C} : |z| < b\}$, continuous on $\overline{\Omega}$, and satisfy

$$u(z) < 0$$
 $|z| = a$
 $u(z) > 0$ $|z| = b.$

Then the set $\{z \in \Omega : u(z) < 0\} \cup \{z : |z| \leq a\}$ is star-like with respect to the origin.

Reference

1. W. K. HAYMAN, D. KERSHAW, AND T. J. LYONS, The best harmonic approximant to a continuous function, *in* "Anniversary Volume on Approximation Theory and Functional Analysis," pp. 317–237, ISNM 65, Academic Press, New York, 1984.